29,430 research outputs found

    Nearest neighbor - A new non-parametric test used for classifying spectral data

    Get PDF
    Nonparametric statistical interference program for spectral data classificatio

    Including the urban heat island in spatial heat health risk assessment strategies: a case study for Birmingham, UK

    Get PDF
    Background Heatwaves present a significant health risk and the hazard is likely to escalate with the increased future temperatures presently predicted by climate change models. The impact of heatwaves is often felt strongest in towns and cities where populations are concentrated and where the climate is often unintentionally modified to produce an urban heat island effect; where urban areas can be significantly warmer than surrounding rural areas. The purpose of this interdisciplinary study is to integrate remotely sensed urban heat island data alongside commercial social segmentation data via a spatial risk assessment methodology in order to highlight potential heat health risk areas and build the foundations for a climate change risk assessment. This paper uses the city of Birmingham, UK as a case study area. Results When looking at vulnerable sections of the population, the analysis identifies a concentration of "very high" risk areas within the city centre, and a number of pockets of "high risk" areas scattered throughout the conurbation. Further analysis looks at household level data which yields a complicated picture with a considerable range of vulnerabilities at a neighbourhood scale. Conclusions The results illustrate that a concentration of "very high" risk people live within the urban heat island, and this should be taken into account by urban planners and city centre environmental managers when considering climate change adaptation strategies or heatwave alert schemes. The methodology has been designed to be transparent and to make use of powerful and readily available datasets so that it can be easily replicated in other urban areas

    Realistic Expanding Source Model for Invariant One-Particle Multiplicity Distributions and Two-Particle Correlations in Relativistic Heavy-Ion Collisions

    Get PDF
    We present a realistic expanding source model with nine parameters that are necessary and sufficient to describe the main physics occuring during hydrodynamical freezeout of the excited hadronic matter produced in relativistic heavy-ion collisions. As a first test of the model, we compare it to data from central Si + Au collisions at p_lab/A = 14.6 GeV/c measured in experiment E-802 at the AGS. An overall chi-square per degree of freedom of 1.055 is achieved for a fit to 1416 data points involving invariant pi^+, pi^-, K^+, and K^- one-particle multiplicity distributions and pi^+ and K^+ two-particle correlations. The 99-percent-confidence region of parameter space is identified, leading to one-dimensional error estimates on the nine fitted parameters and other calculated physical quantities. Three of the most important results are the freezeout temperature, longitudinal proper time, and baryon density along the symmetry axis. For these we find values of 92.9 +/- 4.4 MeV, 8.2 +/- 2.2 fm/c, and 0.0222 + 0.0096 / - 0.0069 fm^-3, respectively.Comment: 37 pages and 12 figures. RevTeX 3.0. Submitted to Physical Review C. Complete preprint, including device-independent (dvi), PostScript, and LaTeX versions of the text, plus PostScript files of all figures, are available at http://t2.lanl.gov/publications/publications.html or at ftp://t2.lanl.gov/publications/res

    Plate-impact loading of cellular structures formed by selective laser melting

    No full text
    Porous materials are of great interest because of improved energy absorption over their solid counterparts. Their properties, however, have been difficult to optimize. Additive manufacturing has emerged as a potential technique to closely define the structure and properties of porous components, i.e. density, strut width and pore size; however, the behaviour of these materials at very high impact energies remains largely unexplored. We describe an initial study of the dynamic compression response of lattice materials fabricated through additive manufacturing. Lattices consisting of an array of intersecting stainless steel rods were fabricated into discs using selective laser melting. The resulting discs were impacted against solid stainless steel targets at velocities ranging from 300 to 700 m s-1 using a gas gun. Continuum CTH simulations were performed to identify key features in the measured wave profiles, while 3D simulations, in which the individual cells were modelled, revealed details of microscale deformation during collapse of the lattice structure. The validated computer models have been used to provide an understanding of the deformation processes in the cellular samples. The study supports the optimization of cellular structures for application as energy absorbers. © 2014 IOP Publishing Ltd

    Improving the Functional Control of Aged Ferroelectrics using Insights from Atomistic Modelling

    Get PDF
    We provide a fundamental insight into the microscopic mechanisms of the ageing processes. Using large scale molecular dynamics simulations of the prototypical ferroelectric material PbTiO3, we demonstrate that the experimentally observed ageing phenomena can be reproduced from intrinsic interactions of defect-dipoles related to dopant-vacancy associates, even in the absence of extrinsic effects. We show that variation of the dopant concentration modifies the material's hysteretic response. We identify a universal method to reduce loss and tune the electromechanical properties of inexpensive ceramics for efficient technologies.Comment: 6 pages, 3 figure

    S-band antenna phased array communications system

    Get PDF
    The development of an S-band antenna phased array for spacecraft to spacecraft communication is discussed. The system requirements, antenna array subsystem design, and hardware implementation are examined. It is stated that the phased array approach offers the greatest simplicity and lowest cost. The objectives of the development contract are defined as: (1) design of a medium gain active phased array S-band communications antenna, (2) development and test of a model of a seven element planar array of radiating elements mounted in the appropriate cavity matrix, and (3) development and test of a breadboard transmit/receive microelectronics module

    Surface chemistry of major rock types of Sonora Pass Test Site, California

    Get PDF
    Chemical study of selected rock samples tabulated as oxide percentage

    JPL microwave experiment support

    Get PDF
    Geological parameter effects on remote microwave radiometer response

    Estimating plasma volume in neonatal Holstein calves fed one or two feedings of a lacteal-based colostrum replacer using Evans blue dye and hematocrit values at various time points.

    Get PDF
    Twenty-eight Holstein calves were blocked by birth date and randomly assigned to one of two treatments to investigate the effect of colostrum replacer (CR) feeding regimen on plasma volume (PV). Treatments were: 1) one feeding of CR (C1; 3L of reconstituted CR 675 g of powder providing 184.5 g of IgG at birth) or 2) two feedings of CR (C2; 2L of reconstituted CR at birth and 1 L of reconstituted CR at six h). By 6 h of age, all calves had received 3L of CR providing 184.5 g of IgG. Plasma volume was estimated at six, 12, 18, and 24 h after birth using Evans blue dye (EBD). No treatment effects were noted at any time points (P \u3e 0.05). Mean PV for all calves regardless of treatment at six, 12, 18, and 24 h were 78.6, 89.2, 83.9, and 90.7 mL kg-1 of BW, respectively. Plasma volume was correlated with hematocrit (HCT), initial HCT, and treatment. Hematocrit was correlated with PV, initial HCT, and body weight. Hematocrit for six, 12, 18 and 24 h after birth can be predicted with an initial precolostral HCT determination
    • …
    corecore